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Abstract

If S = {v1, . . . , vk} is an ordered subset of vertices of a connected graph G and e
is an edge of G, then the vector rG(e|S) = (dG(v1, e), . . . , dG(vk, e)) is the edge met-
ric S-representation of e. If the vertices of G have pairwise different edge metric S-
representations, then S is an edge metric generator for G. The cardinality of a smallest
edge metric generator is the edge metric dimension edim(G) of G. A general sharp upper
bound on the edge metric dimension of hierarchical products G(U)⊓H is proved. Exact
formula is derived for the case when |U | = 1. An integer linear programming model for
computing the edge metric dimension is proposed. Several examples are provided which
demonstrate how these two methods can be applied to obtain the edge metric dimensions
of some applicable graphs.
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1 Introduction

Graphs considered in this paper are connected, finite, and simple. If G is a graph and u, v ∈
V (G), then dG(u, v) denotes the shortest-path distance between u and v. If S = {v1, . . . , vk}
is an ordered subset of V (G), then the metric S-representation of a vertex u ∈ V (G) is
the vector rG(u|S) = (dG(v1, u), . . . , dG(vk, u)). The set S distinguishes vertices u and v
if rG(u|S) 6= rG(v|S) and S is a metric generator for G if each pair of vertices of G is
distinguished by S. A metric generator of smallest cardinality is called a metric basis for G,
its order being the metric dimension dim(G) of G.
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The sources for the metric dimension are papers [12, 22]. Afterwards the concept was
studied in depth, classical references include [4, 6, 7], papers dealing with applications of
the metric dimension in modeling of real world problems include [13, 15], while for some
of the recent developments we refer to [24, 27]. Several variations of the concept were also
studied such as the local metric dimension [18], independent resolving sets [8], strong resolving
sets [17], and k-metric generators [9]. Distinguishing edges instead of vertices seems an utmost
natural variation, hence it comes as a surprise that the edge metric dimension was introduced
only recently in [14] as follows.

Let G be a graph. If u ∈ V (G) and xy ∈ E(G), then the distance dG(u, xy) between u
and xy is min{dG(u, x), dG(u, y)}. If S = {v1, . . . , vk} is an ordered subset of V (G), then the
edge metric S-representation of an edge e ∈ E(G) is the vector

rG(e|S) = (dG(v1, e), . . . , dG(vk, e)) .

S is an edge metric generator for G if the edges of G have pairwise different edge metric S-
representations. A smallest edge metric generator is an edge metric basis for G, its cardinality
is the edge metric dimension edim(G) of G.

When someone thinks of a smart city, an intelligent transportation system (ITS) may
quickly come to mind. Self-driving cars will probably soon play a crucial role in an ITS.
Clearly, a self-driving car needs to determine its position on the city’s streets uniquely, hence
each street needs a code which uniquely determines its location. If we represent the city with
a graph G, where the edges of G correspond to streets, then an edge metric generator of G
provides unique codes for the streets.

The seminal paper [14] on the edge metric dimension brings a wealth of results, including
a proof that the problem of finding the edge metric dimension of a graph is NP-hard and
some approximation results for the invariant. It is also shown that dim(G) and edim(G) are
in general incomparable, but it seems that in most cases dim(G) ≤ edim(G) holds. In a
subsequent paper [30] several problems from [14] are answered, in particular, a classification
of the graphs G of order n for which edim(G) = n − 1 holds is given. These graphs were
also investigated in [29] where a polynomial algorithm is developed for their recognition.
Papers [1, 11, 25, 26] determine the edge metric dimension for some families of graphs.
Finally, in [19] the edge metric dimension of the join of graphs, the lexicographic product of
graphs, and the corona product of graphs is reported.

In the next section we study the edge metric dimension of hierarchical products G(U)⊓H
of graphs. We prove a general sharp upper bound on edim(G(U) ⊓H) and an exact result
for the case when |U | = 1. Earlier known results on the corona product of graphs can be
deduced from these results. In Section 3 we propose an integer linear programming model for
computing the edge metric dimension. In the final section several examples are provided that
demonstrate how the methods proposed in the previous two sections can be applied to obtain
the edge metric dimension of some interesting graphs, notably from mathematical chemistry.

To conclude the introduction we extend (edge) metric generators to vertex and edge
subsets as follows. If X ⊆ V (G), then S ⊆ V (G) is a metric generator for X if the vertices
from X have pairwise different metric S-representations. A smallest metric generator for X
is a metric basis for X, its cardinality being the metric dimension dimG(X) for X. In this
notation, dimG(V (G)) = dim(G). Similarly, if F ⊆ E(G), then S ⊆ V (G) is an edge metric
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generator for F if the edges from F have pairwise different edge metric S-representations. A
smallest edge metric generator for F is an edge metric basis for F , its cardinality is the edge

metric dimension edimG(F ) for F . So edimG(E(G)) = edim(G).

2 Hierarchical products

In this section we consider the edge metric dimension of the hierarchical product of graphs
and mention in passing that the metric dimension and the fractional metric dimension of
these products were studied in [10], and the local metric dimension in [16].

If G and H are graphs and U ⊆ V (G), then the hierarchical product G(U) ⊓H of G and
H (with respect to U) has the vertex set V (G)× V (H) and the edge set

{(g, h)(g′, h′) : gg′ ∈ E(G), h = h′} ∪ {(g, h)(g′ , h′) : g = g′ ∈ U, hh′ ∈ E(H)} .

Note that G(U) ⊓ H contains n(G) subgraphs isomorphic to G, they are called G-layers.
Similarly, G(U) ⊓ H contains |U | subgraphs isomorphic to H, these are H-layers. The
operation ⊓ (for two and also more factors) was in the seminal paper [5] named the generalized
hierarchical product, here we follow the reasonable suggestion from [2] to simplify the naming
to the hierarchical product.

If U ⊆ V (G) and u, v ∈ V (G), then we say that a u, v-walk W is a u, v-walk through U if
W is an u, v-walk in G that contains some vertex of U , where the latter vertex could be one
of u and v. With dG(U)(u, v) we denote the length of a shortest u, v-walk through U . With
this notation we can state the following fundamental observation from [5].

Proposition 2.1 If G is a graph with U ⊆ V (G) and H is a graph, then

dG(U)⊓H ((g, h), (g′ , h′)) =

{

dG(U)(g, g
′) + dH(h, h′); h 6= h′,

dG(g, g
′); h = h′.

To state our results, we need some more preparation. If v is a vertex of a graph G and
k ∈ N0, then let EG(v, k) be the set of edges of G that are at distance k from v, that is,

EG(v, k) = {e ∈ E(G) : dG(v, e) = k} .

If F ⊆ E(G) and |F | ≥ 2, then we say that X ⊆ V (G) is an equidistant discriminator for F ,
if X is an edge metric generator for F . In the case when |F | ≤ 1, we define ∅ to be the only
equidistant discriminator for F . We analogously define equidistant discriminators for vertex
subsets of G. With this terminology we set

edim(G(U)) = min{|
⋃

u∈U

k≥0

SG(u, k) | : SG(u, k) equidistant discriminator for EG(v, k)} .

That is, edim(G(U)) is the cardinality of a smallest set of vertices which distinguish all pairs
of edges that are equidistant from some vertex from U . In addition, we set

edim+(G(U)) = min







|





⋃

u∈U,k≥0

SG(u, k)



 ∪ SG(U) |







,
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where the minimum is taken over all equidistant discriminators SG(u, k) for EG(u, k) and over
all equidistant discriminators SG(U) for U . After this preparation we can state the following
bound.

Theorem 2.2 If G and H are graphs and U ⊆ V (G) with |U | > 1, then

edim(G(U) ⊓H) ≤ n(H)(edim+(G(U)) + 1) .

Proof. Note that the assumption |U | > 1 implies that also n(G) > 1. To simplify the
notation, set X = G(U) ⊓ H for the rest of the proof. Let SG(u, k), u ∈ U , k ≥ 0, be
equidistant discriminators for EG(u, k), and SG(U) be an equidistant discriminator for U
which together realize edim+(G(U)). Set ST (G) =

⋃

u∈U,k≥0 SG(u, k) and let S = (ST (G) ∪
SG(U))× V (H). Select further a vertex w ∈ U and set S′ = {(w, y) : y ∈ V (H)}. We claim
that S ∪S′ is an edge metric generator for X. For this sake let e and f be arbitrary, different
edges of X, and consider the following cases.

Case 1: e and f are both in H-layers.
Suppose first that e and f are in the sameH-layer, say e = (g, h)(g, h′) and e = (g, h′′)(g, h′′′).
If {h, h′}∩{h′′, h′′′} = ∅, that is, if e and f are not adjacent, then consider an arbitrary vertex
v ∈ ST (G) and note that the vertex (v, h) ∈ S distinguishes e and f . In the second subcase
suppose that e and f are adjacent, say h = h′′. Now the vertex (v, h′) ∈ S distinguishes e
and f .

Suppose second that e and f are in different H-layers, say e = (g, h)(g, h′) and e =
(g′, h′′)(g′, h′′′), where g 6= g′. Select a vertex v ∈ SG(U) which distinguishes g and g′, that is,
dG(v, g) 6= dG(v, g

′). In the first subcase suppose that {h, h′} ∩ {h′′, h′′′} 6= ∅, say h = h′′. It
this case the vertex (v, h) ∈ S distinguishes e and f . Suppose next that {h, h′}∩{h′′, h′′′} = ∅.
Then dX((v, h), e) = dX((v, h), (g, h)) and we may without loss of generality assume that
dX((v, h), f) = dX((v, h), (g′ , h′′)). If dX((v, h), e) 6= dX((v, h), f), then (v, h) distinguishes
e and f . Suppose next that dX((v, h), e) = dX((v, h), f). Then dG(U)(v, g) = dG(U)(v, g

′) +
dH(h, h′′). Thus dG(U)(v, g)+dH (h, h′′) > dG(U)(v, g) = dG(U)(v, g

′)+dH(h, h′′) > dG(v, g
′)+

dH(h′′, h′′) and so dX((v, h′′), e) > dX((v, h′′), f). Therefore, the vertex (v, h′′) ∈ S distin-
guishes e and f .

Case 2: e and f are are both in G-layers.
Let e = (g, h)(g′ , h) and f = (g′′, h′)(g′′′, h′). First, we check the case h = h′. In this case,
if there exists a vertex v ∈ U such that d(v, gg′) = d(v, g′′g′′′), then there exists a vertex
u ∈ ST (G) for which dG(u, gg

′) 6= dG(u, g
′′g′′′) holds. Consequently, for the vertex (u, h) ∈ S

we have dX((u, h), e) 6= dX((u, h), f). Otherwise, the vertex (w, h) ∈ S′ distinguishes e and
f .
Now we investigate the case h 6= h′. In this case, if dX((u, h), e) = dX((u, h), f) for each
(u, h) ∈ S, then, again by a similar argument as applied in Case 1, there exists (u, h′) in S
that dX((u, h′), e) 6= dX((u, h′), f).

Case 3: e is in a G-layer and f is in a H-layer.
Let e = (g, h)(g′, h) and f = (g′′, h′)(g′′, h′′). The case h /∈ {h′, h′′} can be proved by a similar
technique as used in Case 1 and so we will only check the case h = h′. If dX((u, h), e) =

4



dX((u, h), f) for each (u, h) ∈ S, then min{dG(g, u), dG(g
′, u)} = dG(u, g

′′) for each u ∈
ST (G)∪SG(U). Therefore, dX((u, h′′), f) = dX((u, h′′), (g′′, h′′)) = dG(u, g

′′) < dX((u, h′′), e).
So we have detected the vertex (u, h′′) ∈ S such that dX((u, h′′), e) 6= dX((u, h′′), f).

We conclude that every pair of edges from X is distinguished by a vertex of S ∪ S′, and
consequently edim(X) ≤ n(H)(edim+(G(U)) + 1). �

Consider the cases in which |U | = 1 or U ∩(ST (G)∪SG(U)) 6= ∅, where ST (G) and SG(U)
are defined as in the proof of Theorem 2.2. If there exists z ∈ U ∩ (ST (G) ∪ SG(U)), then
replacing the vertex set S′ in the proof of Theorem 2.2 with the set{(z, y) : y ∈ V (H)} we
can prove along with the lines of the proof that S is an edge metric generator for G(U) ⊓H.
In the case when |U | = 1, Cases 1 and 3 from the proof are valid for G(U) ⊓H, and we do
not need the vertices of S′ in Case 2. Summarizing this discussion we have the following fact.
If |U | = 1 or U ∩ (ST (G) ∪ SG(U)) 6= ∅, then

edim(G(U) ⊓H) ≤ n(H) edim+(G(U)) . (1)

Consider P11(U)⊓P2, where V (P11) = {v1, . . . , v11) and U = {v2k−1 : k ∈ [6]}, see Fig. 1.

=
v1

v2
v3

v4 v6
v5 v7

v8
v9

v10
v11

Figure 1: P11(U) ⊓ P2, where U = {v1, v3, v5, v7, v9, v11}.

Then we can select SP11
(U) = {v1} and ST (P11) = {v1}, and so edim+(P11(U)) = 1.

From (1) we then infer that S = (SP11
(U) ∪ ST (G))× VH = {v1} × VH (black vertices in the

figure) is an edge metric generator for P11(U) ⊓ P2, hence edim(P11(U) ⊓ P2) ≤ 2. From [14,
Remark 1] we know that edim(G) = 1 if and only if G is a path, therefore we conclude that
edim(P11(U) ⊓ P2) = 2. This demonstrates that (1) is sharp.

We now focus on hierarchical products G(U) ⊓ H, where |U | = 1. If U = {u}, then we
simplify the notation G({u}) to G(u). If G is a path and u its end vertex, then we say that
G(u) is a rooted path.

Theorem 2.3 If X = G(u) ⊓H, where G(u) is not a rooted path, and n(H) ≥ 2, then

edim(X) = n(H) · edim(G(u)) .

Proof. From (1) we know that edim(X) ≤ n(H)·edim+(G(u)). Since |U | = 1, the equidistant
discriminator for U is the empty set, that is, SG(U) = ∅, and consequently edim(X) ≤
n(H) · edim(G(u)).

Let ST (G) =
⋃

u∈U,k≥0 SG(u, k), where SG(u, k) are equidistant discriminators for EG(u, k)

that realize edim(G(U)). Then we know that S = ST (G)×V (H) is an edge metric generator
for X. We wish to show that |S| = edim(X) and assume by way of contradiction that there
is an edge metric generator S′ for X such that |S′| < |S|. By the pigeonhole principle there
exists a G-layer of X, denote it with Gh (here h is the vertex of H to which the G-layer
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corresponds), such that |S′ ∩ V (Gh)| < |S ∩ V (Gh)|. Let S
′
h = S′ ∩ V (Gh) and note that S′

h

is not an equidistant discriminator for E(Gh) and |S′
h| < |ST (G)|. Hence there exist k ≥ 0

and edges e, f ∈ E(Gh) ∩ {(g, h)(g′, h) : gg′ ∈ EG(u, k)} such that dX(x, e) = dX(x, f)
holds for each vertex x ∈ S′

h. Since dX((u, h), e) = dX((u, h), f), it follows that the equality
dX(v, e) = dX(v, f) holds also for each v ∈ S′ \V (Gh). But this means that S′ is not an edge
metric generator for X, a contradiction. �

Note that the rooted paths G(u) are the only graphs for which ST (G) = ∅ and conse-
quently edim(G(u)) = 0. This is the reason that the rooted paths are excluded in Theo-
rem 2.3.

To conclude the section we consider the corona product of graphs. Recall that the corona
product G⊙H of graphs G and H is obtained from the disjoint union of G and n(G) copies
of H, by joining by an edge every vertex from the ith copy of H with the ith vertex of G.
(See [23] for more information on this product.) The key observation is that

G⊙H = (H + v)(v) ⊓G ,

where H+v denotes the join of H and the one vertex graph with the vertex v. More precisely,
H + v = H +K1, where V (K1) = {v}. Then Theorem 2.3 implies that

edim(G⊙H) = edim((H + v)(v) ⊓G) = n(G) · edim((H + v)(v)) .

From here it is not difficult to deduce [30, Theorem 4.1] which determines the edge metric
dimension for the join of K1 and an arbitrary graph, and [19, Theorem 6] that determines
the edge metric dimension of corona products of nontrivial graphs. We can reformulate and
combine these two results as follows. Let F be the family of graphs consisting of all graphs
G such that that dG(v, e) ≤ 1 holds for each e ∈ E(G) and each v ∈ V (G).

Theorem 2.4 If G is a connected graph, and H is a graph with more than one vertex, then

edim(G⊙H) =

{

n(H); n(G) = 1 and H ∈ F ,

n(G)(n(H) − 1); otherwise.

3 Integer linear programming model

An integer linear programming model, ILPM for short, for finding the metric dimension and
a metric basis for a graph has been presented in [7]. Following this approach we introduce
an ILPM for finding the edge metric basis for a given graph as follows.

Let G be a graph with V (G) = {v1, . . . , vn} and E(G) = {e1, . . . , em}. Let DG = [dij ]
be an m × n matrix, where dij = dG(ei, vj) for i ∈ [m] and j ∈ [n]. For xi ∈ {0, 1}, i ∈ [n],
define the function F by

F (x1, . . . , xn) = x1 + · · ·+ xn ,

and minimize F subject to the constraints

|di1 − dj1|x1 + |di2 − dj2|x2 + · · ·+ |din − djn|xn > 0, 1 ≤ i < j ≤ m.
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Then note that if x′1, . . . , x
′
n is a set of values for which F attains its minimum, then W =

{vi : x′i = 1} is an edge metric basis for G.
For example, consider K3 with the vertex set {v1, v2, v3} and edges e1 = v1v2, e2 = v2v3,

and e3 = v1v3. Then DK3
=





0 0 1
1 0 0
0 1 0



. Thus, minimize F (x1, x2, x3) = x1+x2+x3 subject

to the constraints x1 + x3 > 0, x2 + x3 > 0, x1 + x2 > 0, x1, x2, x3 ∈ {0, 1}. Then F attains
its minimum for x1 = 0, x2 = 1, and x3 = 1, hence W = {v2, v3} is an edge metric basis for
K3.

4 Applications

In this section we demonstrate how the results from the previous sections can be applied to
compute the edge metric dimension of interesting graphs.

Let G1, . . . , Gk be rooted graphs with respective root vertices r1, . . . , rk. The bridge-cycle
graph BC(G1, . . . , Gk; r1, . . . , rk) is the graph obtained from the disjoint union of G1, . . . , Gk

by joining the vertices ri and ri+1 for all i ∈ [r − 1] and adding the edge r1rk, see Fig. 2.

G
2

G
1

G
k-1

G
k

r
k

r
1

r
2

r
k-1

Figure 2: The bridge-cycle graph BC(G1, . . . , Gk; r1, . . . , rk).

If G1 = · · · = Gk = G and r = r1, where G(r) is not a rooted path, then we infer that
BC(G1, . . . , Gk; r1, . . . , rk) ∼= G(r) ⊓ Ck. Theorem 2.3 then implies that

edim(BC(G1, . . . , Gk; r1, . . . , rk)) = edim(G(r) ⊓Ck) = k · edim(G(r)) .

The examples from the rest of this section come from chemical graph theory. Consider
first the (molecular) graph of truncated cube, it is denoted by Γ and drawn in Fig. 3.

As the figure shows, Γ is isomorphic to the hierarchical product W (U)⊓P2 (see the figure
for W ), where U = {g1, g4, g7, g10}. Then, by the proof of Theorem 2.2, S = {g1, g6} ×
V (H) = {(g1, h1), (g1, h2), (g6, h1), (g6, h2)} because ST (W ) = SW (U) = {g1, g6}. Thus
edim+(W (U)) = 2, and so by (1), edim(Γ) = edim(W (U) ⊓ P2) ≤ 4. On the other hand,
the exact value of edim(Γ) computed by the ILPM from Section 3 is equal to 3. The black
vertices from Fig. 3 form an edge metric bases of Γ found by the ILPM.

Continuing with examples from chemical graph theory, recall that a fullerene is a plane, 3-
connected, cubic graph with only pentagonal and hexagonal faces. The literature on fullerenes
is huge, see for instance [20] for more informations about their electronic and structural
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=

g1

W

g2

g3

g4
g5

g7

g9

g10

g11

g12

g6

g8

h1

h1

Figure 3: W (U) ⊓ P2 = Γ where U = {g1, g4, g7, g10}.

properties and the recent survey [3]. More generally, the term fullerene is also used for such
graphs where other lengths of faces are present, cf. [21, 28]. For instance, the graph (BN)16
from Fig. 4 is an example of a (4, 6)-fullerene.

u
1

u
2

u3

u
4

u5

u6

u
7

u
8

u
1

u
2

u
3

u
4

=

=

(b)

(c)

W

W'

=

u
1

u
2

(a)K1,3

(BN)16

Figure 4: (a) K1,3(U)⊓ P2 where {u1, u2} (b) W (U)⊓P2 where {u1, . . . , u4} (c) W ′(U)⊓P2

where {u1, . . . , u8}.

By Fig. 4 and Theorem 2.2, we have edim(K1,3(U) ⊓ P2) ≤ 4, edim(W (U) ⊓ P2) ≤ 4,
and edim((BN)16) = edim(W ′(U) ⊓ P2) ≤ 4. On the other hand, using the ILPM from the
previous section we get edim(K1,3(U)⊓P2) = 2, edim(W (U)⊓P2) = 2, and edim((BN)16) = 3.
The black vertices show form the edge metric bases found by the ILPM.
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